IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/256180.html
   My bibliography  Save this article

Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches

Author

Listed:
  • Jui-Yu Wu

Abstract

Stochastic global optimization (SGO) algorithms such as the particle swarm optimization (PSO) approach have become popular for solving unconstrained global optimization (UGO) problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO) method and an artificial immune algorithm-based PSO (AIA-PSO) method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.

Suggested Citation

  • Jui-Yu Wu, 2013. "Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-15, March.
  • Handle: RePEc:hin:jnlmpe:256180
    DOI: 10.1155/2013/256180
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/256180.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/256180.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/256180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:256180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.