IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2561072.html
   My bibliography  Save this article

Application of Data Mining Technology-Based Nursing Risk Management in Emergency Department Care

Author

Listed:
  • Weiwei Han
  • Songqin Wang
  • Jianhong Gao
  • Naeem Jan

Abstract

Nursing risk refers to all unsafe events that may occur in clinical nursing work. Common risk events include bed fall, fall, scald, line dislodgement, drug extravasation, and drug administration error, which easily lead to nursing-patient disputes and seriously affect the prognosis of patients. In order to effectively avoid nursing risks, strengthening nursing risk management (NRM), improving nursing management mechanism, and improving nursing operation process have become effective ways to manage risks. The emergency department is an important window for rescuing critically ill patients in the hospital, and it is also the main department where diagnosis, nursing risk events, and medical disputes occur. The traditional risk care model has failed to meet the current demand for emergency patient management, and a more scientific and standardized management scheme is urgently needed. In order to improve the quality of NRM in emergency departments and combine the advantages and characteristics of big data-related technologies, this paper proposes an algorithm based on data mining for application in emergency care. The application of data mining in medical care is summarized and combined with the work content and requirements of hospital emergency care, and the application of big data in patient condition monitoring and early warning, medical and nursing staff scheduling, and patient emotional reassurance is discussed, and then, a solution for hospitals to optimize emergency care using data mining is proposed for the special characteristics of emergency care. Initially, the optimized solution is proposed to improve the efficiency and accuracy of patient condition monitoring and early warning, to improve the real-time scheduling of medical and nursing staff, and to solve medical care problems such as patient emotional calming. The analysis shows that the application of big data in emergency care can improve the efficiency of emergency ambulance, improve the doctor-patient relationship, and promote the development of emergency care.

Suggested Citation

  • Weiwei Han & Songqin Wang & Jianhong Gao & Naeem Jan, 2022. "Application of Data Mining Technology-Based Nursing Risk Management in Emergency Department Care," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, May.
  • Handle: RePEc:hin:jnlmpe:2561072
    DOI: 10.1155/2022/2561072
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/2561072.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/2561072.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/2561072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2561072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.