Author
Listed:
- Xingli Liu
- Junjie Fan
- Haiqun Ma
- Zaoli Yang
Abstract
The purpose of this paper is to solve the problem of big data and small samples caused by the high manual annotation cost of a military corpus. The deep learning algorithm of entity extraction in the military field was organically combined with the method of bootstrapping loop iteration to complete a study on the application of intelligent corpus annotation of military field entities. With the experimental research showing that using a small number of military field entity corpus annotations for RoBERTa pretraining word vectors and BiLSTM-CRF models and based on the bootstrapping algorithm idea to complete 3 rounds of loop iterations and 10 rounds of cross-validation joint-voting model iterations, the best entity extraction model evaluation F value reached up to 91.5%. Finally, the 60M intelligent corpus annotation application testing was completed using the best model of iteration of this round, with a total of 178,177 sentences of military field corpus intelligently labeled, the number of entities that should be labeled reaching 417,734. Therefore, this is an efficient way of construction and evaluation of intelligent corpus annotation model in the military entity extraction field. The findings of this paper provide an effective way of how to complete the labeled corpus. The research serves as a first step for future research, for example, the construction of knowledge graphs and military intelligent Q&A.
Suggested Citation
Xingli Liu & Junjie Fan & Haiqun Ma & Zaoli Yang, 2022.
"Research on Application of Intelligent Corpus Annotation of Entity Extraction with Construction of Knowledge Graph,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, October.
Handle:
RePEc:hin:jnlmpe:2552331
DOI: 10.1155/2022/2552331
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2552331. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.