Author
Listed:
- Zhiyu Xu
- Yonghua Tan
- Xiaoming Li
Abstract
Adaptive wavelet collocation methods use wavelet transform and filtering to generate adaptive grids. However, if the boundary moves, the grid becomes aberrant. It baffles wavelet transform and makes the adaptive wavelet methods lose advantages on computational efficiency. This paper develops a series of methods or skills to effectively perform wavelet transform and to generate adaptive grids for one-dimensional movable boundary problems. The methods remain the original inner grid points and keep the grid in the original-nested structure, in order to remain scanty during the whole computing process. For boundary extending, the adaptive wavelet program begins to run on the very new grid beyond the original boundary once it reaches a nested structure, which is called the Intermittent Adaptive Method as a consequence. If the boundary extends tremendously, the new nested grids can be combined to a greater nested grid for further efficiency, which is named the Grid Combine Method. While for boundary contracting, a fictitious boundary is addressed to replace the original boundary that will recede, so wavelet transform can be successfully performed on the original nested grid. Finally, two numerical tests, local features moving and gas gun, were resolved and discussed to show the evolution process of the adaptive grids with the boundaries moving. For boundary contracting, the valid points decrease because the computation domain recedes; while for boundary extending, the valid point numbers vary between a range that almost remains unchanged.
Suggested Citation
Zhiyu Xu & Yonghua Tan & Xiaoming Li, 2020.
"Wavelet Methods and Adaptive Grids in One-Dimensional Movable Boundary Problems,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, March.
Handle:
RePEc:hin:jnlmpe:2545292
DOI: 10.1155/2020/2545292
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2545292. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.