Author
Listed:
- Yasong Pu
- Yaoyao Shi
- Xiaojun Lin
- Yuan Hu
- Zhishan Li
Abstract
Smooth orientation planning is beneficial for the working performance and service life of industrial robots, keeping robots from violent impacts and shocks caused by discontinuous orientation planning. Nevertheless, the popular used quaternion interpolations can hardly guarantee C 2 continuity for multiorientation interpolation. Aiming at the problem, an efficient quaternion interpolation methodology based on logarithmic quaternion was proposed. Quaternions of more than two key orientations were expressed in the exponential forms of quaternion. These four-dimensional quaternions in space S 3 , when logarithms were taken for them, could be converted to three-dimensional points in space R 3 so that B-spline interpolation could be applied freely to interpolate. The core formulas that B-spline interpolated points were mapped to quaternion were founded since B-spline interpolated point vectors were decomposed to the product of unitized forms and exponents were taken for them. The proposed methodology made B-spline curve applicable to quaternion interpolation through dimension reduction and the high-order continuity of the B-spline curve remained when B-spline interpolated points were mapped to quaternions. The function for reversely finding control points of B-spline curve with zero curvature at endpoints was derived, which helped interpolation curve become smoother and sleeker. The validity and rationality of the principle were verified by the study case. For comparison, the study case was also analyzed by the popular quaternion interpolations, Spherical Linear Interpolation (SLERP) and Spherical and Quadrangle (SQUAD). The comparison results demonstrated the proposed methodology had higher smoothness than SLERP and SQUAD and thus would provide better protection for robot end-effector from violent impacts led by unreasonable multiorientation interpolation. It should be noted that the proposed methodology can be extended to multiorientation quaternion interpolation with higher continuity than the second order.
Suggested Citation
Yasong Pu & Yaoyao Shi & Xiaojun Lin & Yuan Hu & Zhishan Li, 2020.
"C 2 -Continuous Orientation Planning for Robot End-Effector with B-Spline Curve Based on Logarithmic Quaternion,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-16, July.
Handle:
RePEc:hin:jnlmpe:2543824
DOI: 10.1155/2020/2543824
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2543824. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.