IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2541413.html
   My bibliography  Save this article

Unsteady Bioconvection Squeezing Flow in a Horizontal Channel with Chemical Reaction and Magnetic Field Effects

Author

Listed:
  • Qingkai Zhao
  • Hang Xu
  • Longbin Tao

Abstract

The time-dependent mixed bioconvection flow of an electrically conducting fluid between two infinite parallel plates in the presence of a magnetic field and a first-order chemical reaction is investigated. The fully coupled nonlinear systems describing the total mass, momentum, thermal energy, mass diffusion, and microorganisms equations are reduced to a set of ordinary differential equations via a set of new similarity transformations. The detailed analysis illustrating the influences of various physical parameters such as the magnetic, squeezing, and chemical reaction parameters and the Schmidt and Prandtl numbers on the distributions of temperature and microorganisms as well as the skin friction and the Nusselt number is presented. The conclusion is drawn that the flow field, temperature, and chemical reaction profiles are significantly influenced by magnetic parameter, heat generation/absorption parameter, and chemical parameter. Some examples of potential applications of such bioconvection could be found in pharmaceutical industry, microfluidic devices, microbial enhanced oil recovery, modeling oil, and gas-bearing sedimentary basins.

Suggested Citation

  • Qingkai Zhao & Hang Xu & Longbin Tao, 2017. "Unsteady Bioconvection Squeezing Flow in a Horizontal Channel with Chemical Reaction and Magnetic Field Effects," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-9, January.
  • Handle: RePEc:hin:jnlmpe:2541413
    DOI: 10.1155/2017/2541413
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/2541413.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/2541413.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/2541413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asjad, Muhammad Imran & Sunthrayuth, Pongsakorn & Ikram, Muhammad Danish & Muhammad, Taseer & Alshomrani, Ali Saleh, 2022. "Analysis of non-singular fractional bioconvection and thermal memory with generalized Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Muhammad Imran Asjad & Saif Ur Rehman & Ali Ahmadian & Soheil Salahshour & Mehdi Salimi, 2021. "First Solution of Fractional Bioconvection with Power Law Kernel for a Vertical Surface," Mathematics, MDPI, vol. 9(12), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2541413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.