IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2540681.html
   My bibliography  Save this article

A Novel Agricultural Commodity Price Forecasting Model Based on Fuzzy Information Granulation and MEA-SVM Model

Author

Listed:
  • Yongli Zhang
  • Sanggyun Na

Abstract

Accurately predicting the price of agricultural commodity is very important for evading market risk, increasing agricultural income, and accomplishing government macroeconomic regulation. With the price index predictions of 6 commodities of Food and Agriculture Organization of the United Nations (FAO) as examples, this paper proposed a novel agricultural commodity price forecasting model which combined the fuzzy information granulation, mind evolutionary algorithm (MEA), and support vector machine (SVM). Firstly, the time series data of agricultural commodity price index was transformed into fuzzy information granulation particles made up of Low , , and Up , which represented the trend and magnitude of price movement. Secondly, MEA algorithm was employed to seek the optimal parameters and for SVM to establish the MEA-SVM model. Finally, FOA price index fluctuation range and change trend in the future were predicted by the MEA-SVM model. The empirical analysis showed that the MEA-SVM model was effective and had higher prediction accuracy and faster calculation speed in the forecasting of agricultural commodity price.

Suggested Citation

  • Yongli Zhang & Sanggyun Na, 2018. "A Novel Agricultural Commodity Price Forecasting Model Based on Fuzzy Information Granulation and MEA-SVM Model," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, November.
  • Handle: RePEc:hin:jnlmpe:2540681
    DOI: 10.1155/2018/2540681
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/2540681.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/2540681.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/2540681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingjie Zhou & Panpan Zhu & You Wu & Yinpeng Zhang, 2022. "Research on the Volatility of the Cotton Market under Different Term Structures: Perspective from Investor Attention," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
    2. Tserenpurev Chuluunsaikhan & Ga-Ae Ryu & Kwan-Hee Yoo & HyungChul Rah & Aziz Nasridinov, 2020. "Incorporating Deep Learning and News Topic Modeling for Forecasting Pork Prices: The Case of South Korea," Agriculture, MDPI, vol. 10(11), pages 1-22, October.
    3. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    4. Prabakaran, G. & Vaithiyanathan, D. & Ganesan, Madhavi, 2021. "FPGA based effective agriculture productivity prediction system using fuzzy support vector machine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 1-16.
    5. Roberto Louis Forestal & Shih-Ming Pi, 2021. "Using Artificial Neural networks and Optimal Scaling Model to Forecast Agriculture Commodity Price: An Ecological-economic Approach," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 11(3), pages 1-3.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2540681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.