Author
Listed:
- Shun Hu Zhang
- Li Zhi Che
- Xin Ying Liu
Abstract
The precision of traditional deformation resistance model is limited, which leads to the inaccuracy of the existing rolling force model. In this paper, the back propagation (BP) neural network model was established according to the industrial big data to accurately predict the deformation resistance. Then, a new rolling force model was established by using the BP neural network model. During the establishment of the neural network model, the data set of deformation resistance was established, which was calculated back from the actual rolling force data. Based on the data set after normalization, the BP neural network model of deformation resistance was established through the optimization of algorithm and network structure. It is shown that both the prediction accuracy of the neural network model on the training set and the test set are high, indicating that the generalization ability of the model is strong. The neural network model of the deformation resistance is compared with the theoretical one, and the maximum error is only 3.96%. Furthermore, by comparison with the traditional rolling force model, it is found that the prediction accuracy of the rolling force model imbedding with the present neural network model is improved obviously. The maximum error of the present rolling force model is just 3.86%. The research in this paper provides a new way to improve the prediction accuracy of rolling force model.
Suggested Citation
Shun Hu Zhang & Li Zhi Che & Xin Ying Liu, 2021.
"Modelling of Deformation Resistance with Big Data and Its Application in the Prediction of Rolling Force of Thick Plate,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, November.
Handle:
RePEc:hin:jnlmpe:2500636
DOI: 10.1155/2021/2500636
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2500636. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.