IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2472726.html
   My bibliography  Save this article

Semantic Segmentation of Remote Sensing Image Based on Convolutional Neural Network and Mask Generation

Author

Listed:
  • Binglin Niu

Abstract

High-resolution remote sensing images usually contain complex semantic information and confusing targets, so their semantic segmentation is an important and challenging task. To resolve the problem of inadequate utilization of multilayer features by existing methods, a semantic segmentation method for remote sensing images based on convolutional neural network and mask generation is proposed. In this method, the boundary box is used as the initial foreground segmentation profile, and the edge information of the foreground object is obtained by using the multilayer feature of the convolutional neural network. In order to obtain the rough object segmentation mask, the general shape and position of the foreground object are estimated by using the high-level features in the process of layer-by-layer iteration. Then, based on the obtained rough mask, the mask is updated layer by layer using the neural network characteristics to obtain a more accurate mask. In order to solve the difficulty of deep neural network training and the problem of degeneration after convergence, a framework based on residual learning was adopted, which can simplify the training of those very deep networks and improve the accuracy of the network. For comparison with other advanced algorithms, the proposed algorithm was tested on the Potsdam and Vaihingen datasets. Experimental results show that, compared with other algorithms, the algorithm in this article can effectively improve the overall precision of semantic segmentation of high-resolution remote sensing images and shorten the overall training time and segmentation time.

Suggested Citation

  • Binglin Niu, 2021. "Semantic Segmentation of Remote Sensing Image Based on Convolutional Neural Network and Mask Generation," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, June.
  • Handle: RePEc:hin:jnlmpe:2472726
    DOI: 10.1155/2021/2472726
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/2472726.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/2472726.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/2472726?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2472726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.