IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2472060.html
   My bibliography  Save this article

On Inverse Problems for Characteristic Sources in Helmholtz Equations

Author

Listed:
  • Carlos J. S. Alves
  • Roberto Mamud
  • Nuno F. M. Martins
  • Nilson C. Roberty

Abstract

We consider the inverse problem that consists in the determination of characteristic sources, in the modified and classical Helmholtz equations, based on external boundary measurements. We identify the location of the barycenter establishing a simple formula for symmetric shapes, which also holds for the determination of a single source point. We use this for the reconstruction of the characteristic source, based on the Method of Fundamental Solutions (MFS). The MFS is also applied as a solver for the direct problem, using an equivalent formulation as a jump or transmission problem. As a solver for the inverse problem, we may apply minimization using an equivalent reciprocity functional formulation. Numerical experiments with the barycenter and the boundary reconstructions are presented.

Suggested Citation

  • Carlos J. S. Alves & Roberto Mamud & Nuno F. M. Martins & Nilson C. Roberty, 2017. "On Inverse Problems for Characteristic Sources in Helmholtz Equations," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-16, February.
  • Handle: RePEc:hin:jnlmpe:2472060
    DOI: 10.1155/2017/2472060
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/2472060.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/2472060.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/2472060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrios S. Lazaridis & Nikolaos L. Tsitsas, 2023. "Detecting Line Sources inside Cylinders by Analytical Algorithms," Mathematics, MDPI, vol. 11(13), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2472060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.