IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2420456.html
   My bibliography  Save this article

Dissolved Gas Analysis of Insulating Oil in Electric Power Transformers: A Case Study Using SDAE-LSTM

Author

Listed:
  • Zhao Luo
  • Zhiyuan Zhang
  • Xu Yan
  • Jinghui Qin
  • Zhendong Zhu
  • Hao Wang
  • Zeyong Gao

Abstract

Dissolved gas analysis (DGA) is the most important tool for fault diagnosis in electric power transformers. To improve accuracy of diagnosis, this paper proposed a new model (SDAE-LSTM) to identify the dissolved gases in the insulating oil of power transformers and perform parameter analysis. The performance evaluation is attained by the case studies in terms of recognition accuracy, precision ratio, and recall ratio. Experiment results show that the SDAE-LSTM model performs better than other models under different input conditions. As evidenced from the analyses, the proposed model achieves considerable results of recognition accuracy (95.86%), precision ratio (95.79%), and recall ratio (97.51%). It can be confirmed that the SDAE-LSTM model using the dissolved gas in the power transformer for fault diagnosis and analysis has great research prospect.

Suggested Citation

  • Zhao Luo & Zhiyuan Zhang & Xu Yan & Jinghui Qin & Zhendong Zhu & Hao Wang & Zeyong Gao, 2020. "Dissolved Gas Analysis of Insulating Oil in Electric Power Transformers: A Case Study Using SDAE-LSTM," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, November.
  • Handle: RePEc:hin:jnlmpe:2420456
    DOI: 10.1155/2020/2420456
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/2420456.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/2420456.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/2420456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    2. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2420456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.