Author
Listed:
- Nasif R. Jaffri
- Ahmad Almogren
- Aftab Ahmad
- Usama Abrar
- Ayman Radwan
- Farzan A. Khan
Abstract
Electrical capacitance tomography (ECT) has been used to measure flow by applying gas-solid flow in coal gasification, pharmaceutical, and other industries. ECT is also used for creating images of physically confined objects. The data collected by the acquisition system to produce images undergo blurring because of ambient conditions and the electronic circuitry used. This research includes the principle of ECT techniques for deblurring images that were created during measurement. The data recorded by the said acquisition system ascends a large number of linear equations. This system of equations is sparse and ill-conditioned and hence is ill-posed in nature. A variety of reconstruction algorithms with many pros and cons are available to deal with ill-posed problems. Large-scale systems of linear equations resulting during image deblurring problems are solved using iterative regularization algorithms. The conjugate gradient algorithm for least-squares problems (CGLS), least-squares QR factorization (LSQR), and the modified residual norm steepest descent (MRNSD) algorithm are the famous variations of iterative algorithms. These algorithms exhibit a semiconvergence behavior; that is, the computed solution quality first improves and then reduces as the error norm decreases and later increases with each iteration. In this work, soft thresholding has been used for image deblurring problems to tackle the semiconvergence issues. Numerical test problems were executed to indicate the efficacy of the suggested algorithms with criteria for optimal stopping iterations. Results show marginal improvement compared to the traditional iterative algorithms (CGLS, LSQR, and MRNSD) for resolving semiconvergence behavior and image restoration.
Suggested Citation
Nasif R. Jaffri & Ahmad Almogren & Aftab Ahmad & Usama Abrar & Ayman Radwan & Farzan A. Khan, 2021.
"Iterative Algorithms for Deblurring of Images in Case of Electrical Capacitance Tomography,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, August.
Handle:
RePEc:hin:jnlmpe:2268544
DOI: 10.1155/2021/2268544
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2268544. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.