Author
Listed:
- Jiacheng Tan
- Liqun Xu
- Kailai Zhang
- Chao Yang
Abstract
Back analysis for seepage parameters is a classic issue in hydraulic engineering seepage calculations. Considering the characteristics of inversion problems, including high dimensionality, numerous local optimal values, poor convergence performance, and excessive calculation time, a biological immune mechanism-based quantum particle swarm optimization (IQPSO) algorithm was proposed to solve the inversion problem. By introducing a concentration regulation strategy to improve the population diversity and a vaccination strategy to accelerate the convergence rate, the modified algorithm overcame the shortcomings of traditional PSO which can easily fall into a local optimum. Furthermore, a simple multicore parallel computation strategy was applied to reduce computation time. The effectiveness and practicability of IQPSO were evaluated by numerical experiments. In this paper, taking one concrete face rock-fill dam (CFRD) as a case, a back analysis for seepage parameters was accomplished by utilizing the proposed optimization algorithm and the steady seepage field of the dam was analysed by the finite element method (FEM). Compared with immune PSO and quantum PSO, the proposed algorithm had better global search ability, convergence performance, and calculation rate. The optimized back analysis could obtain the permeability coefficient of CFRD with high accuracy.
Suggested Citation
Jiacheng Tan & Liqun Xu & Kailai Zhang & Chao Yang, 2020.
"A Biological Immune Mechanism-Based Quantum PSO Algorithm and Its Application in Back Analysis for Seepage Parameters,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, June.
Handle:
RePEc:hin:jnlmpe:2191079
DOI: 10.1155/2020/2191079
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2191079. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.