Author
Listed:
- Qingyun Yuan
- Tan Liu
- Xiaoming Ding
- Yonggang Wang
- Yingli Cao
- Francesco Lolli
Abstract
Due to the complexity of photosynthesis of greenhouse crops, there are inevitable errors between the established photosynthetic rate model and the actual value, which makes it difficult to guarantee the optimality and even feasibility of the optimal regulation of greenhouse light environment based on the original photosynthetic rate model. To solve these problems, this paper proposes an optimal regulation method of greenhouse light environment considering the error of photosynthetic rate model. The main contributions of this method are as follows: firstly, the photosynthetic rate model is established by using the error compensation extreme learning machine method to reduce the error between the model output and the actual value. Then, the model output is introduced into the optimal regulation problem of greenhouse light environment to form the optimal regulation model of greenhouse light environment after error compensation, and the constrained adaptive particle swarm optimization algorithm is used to solve the optimal regulation model, which ensures the rapid convergence of optimization results, makes the optimization results closer to the actual optimal values, and improves the reliability of optimal regulation of greenhouse light environment. Finally, the effectiveness of the proposed optimal regulation method is verified by experiments. The simulation results also show that the proposed optimal regulation method can give a reasonable light intensity setting value in time under different temperature, humidity, and CO2 conditions inside greenhouse, meet the needs of photosynthesis of actual greenhouse crops, and make the growth of greenhouse crops efficient and stable.
Suggested Citation
Qingyun Yuan & Tan Liu & Xiaoming Ding & Yonggang Wang & Yingli Cao & Francesco Lolli, 2022.
"Optimal Regulation Method of Greenhouse Light Environment considering Photosynthetic Rate Model Error,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-14, June.
Handle:
RePEc:hin:jnlmpe:2108334
DOI: 10.1155/2022/2108334
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2108334. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.