IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2107113.html
   My bibliography  Save this article

A Novel Machine Learning Model for the Detection of Epilepsy and Epileptic Seizures Using Electroencephalographic Signals Based on Chaos and Fractal Theories

Author

Listed:
  • Zayneb Brari
  • Safya Belghith

Abstract

Machine learning is an expanding research area. Its main application is in the medical field and particularly the detection of epilepsy and epileptic seizures through electroencephalographic signals (EEG). It aims to design an intelligent framework that enables an immediate diagnosis of this disease without neurological consultation and thus saves the lives of the epileptic patients by detecting seizures and warning them before it happens. However, as a real-time application, this kind of framework faces several challenges such as accuracy, fast responses, and optimal memory usage. Within this context, our work was carried out. We propose a new machine learning framework based on chaos and fractal theories. Two main novelties are presented in this paper. Firstly, we propose a new method for signal preprocessing, and we reconstruct new versions of studied EEG signals using derivative determination and chaotic injection. Secondly, we suggest a new method for fractal analysis using Higuchi fractal dimension (HFD). In fact, HFDs extracted from EEG derivatives lead to detect epilepsy, whereas HFDs extracted from EEG with a chaotic signal injection lead to seizure detection. In addition, feature fusion helped to linearize all classification problems. An experimental study using the Bonn EEG database proves the efficiency of our contributions in comparison to published research. An accuracy of 100% was achieved in different classification cases using few features and a simple linear classifier.

Suggested Citation

  • Zayneb Brari & Safya Belghith, 2021. "A Novel Machine Learning Model for the Detection of Epilepsy and Epileptic Seizures Using Electroencephalographic Signals Based on Chaos and Fractal Theories," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, August.
  • Handle: RePEc:hin:jnlmpe:2107113
    DOI: 10.1155/2021/2107113
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/2107113.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/2107113.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/2107113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brari, Zayneb & Belghith, Safya, 2022. "A new algorithm for Largest Lyapunov Exponent determination for noisy chaotic signal studies with application to Electroencephalographic signals analysis for epilepsy and epileptic seizures detection," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2107113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.