IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2098350.html
   My bibliography  Save this article

FEM Analysis and Simplified Approach for a Single Energy Pile Subjected to Thermomechanical Loads

Author

Listed:
  • Zhong-jin Wang
  • Peng-fei Fang
  • Ri-hong Zhang
  • Kui-hua Wang
  • Xin-yu Xie

Abstract

The distribution of temperature in sand soils was measured through laboratory tests, and the temperature influence on friction resistances at the concrete-soil interface was analyzed. Based on the results of laboratory tests, the finite element model was established using the sequential thermal coupling method. The influences of temperature on the bearing characteristics of energy pile were analyzed. The analysis results show that the cyclic temperature will cause additional displacement along pile depth. It is pointed out that if applied vertical loads at energy pile head exceed the value from which nonlinear settlements would be initiated, irrecoverable additional settlement will occur at pile head. Based on the analysis results, a simplified approach was proposed to estimate the zero point of additional displacement along pile shaft and the additional axial pile force. The comparison between the calculated results obtained by the proposed method and that of ABAQUS on single energy pile was given to verify the accuracy of the proposed method. It is shown that reasonable predictions can be obtained without expensive and time-consuming analyses by the proposed method in this paper.

Suggested Citation

  • Zhong-jin Wang & Peng-fei Fang & Ri-hong Zhang & Kui-hua Wang & Xin-yu Xie, 2019. "FEM Analysis and Simplified Approach for a Single Energy Pile Subjected to Thermomechanical Loads," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-10, February.
  • Handle: RePEc:hin:jnlmpe:2098350
    DOI: 10.1155/2019/2098350
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/2098350.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/2098350.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/2098350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Weibo & Sun, Taofu & Zhang, Chaoyang & Wang, Feng, 2023. "Experimental and numerical investigations of thermo-mechanical behaviour of energy pile under cyclic temperature loads," Energy, Elsevier, vol. 267(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2098350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.