IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2091382.html
   My bibliography  Save this article

Fault Detection of Wind Turbine Pitch System Based on Multiclass Optimal Margin Distribution Machine

Author

Listed:
  • Mingzhu Tang
  • Zijie Kuang
  • Qi Zhao
  • Huawei Wu
  • Xu Yang

Abstract

In response to the unbalanced sample categories and complex sample distribution of the operating data of the pitch system of the wind turbine generator system, this paper proposes a method for fault detection of the pitch system of the wind turbine generator system based on the multiclass optimal margin distribution machine. In this method, the power output of the wind turbine generator system is used as the main status parameter, and the operating data history of the wind turbine generator system in the wind power supervisory control and data acquisition (SCADA) system is subject to correlation analysis with the Pearson correlation coefficient, to eliminate the features that have low correlation with the power output status parameter. Secondary analysis is performed to the remaining features, thus reducing the number and complexity of samples. Datasets are divided into the training set for training of the multiclass optimal margin distribution machine fault detection model and test set for testing. Experimental verification was carried out with the operating data of one wind farm in China. Experimental results show that, compared with other support vector machines, the proposed method has higher fault detection accuracy and precision and lower false-negative rate and false-positive rate.

Suggested Citation

  • Mingzhu Tang & Zijie Kuang & Qi Zhao & Huawei Wu & Xu Yang, 2020. "Fault Detection of Wind Turbine Pitch System Based on Multiclass Optimal Margin Distribution Machine," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, August.
  • Handle: RePEc:hin:jnlmpe:2091382
    DOI: 10.1155/2020/2091382
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/2091382.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/2091382.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/2091382?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhibi, Khaled & Mansouri, Majdi & Bouzrara, Kais & Nounou, Hazem & Nounou, Mohamed, 2022. "Reduced neural network based ensemble approach for fault detection and diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 194(C), pages 778-787.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2091382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.