Author
Listed:
- Shanhe Jiang
- Chaolong Zhang
- Shijun Chen
Abstract
Particle swarm optimization (PSO) has been proven to show good performance for solving various optimization problems. However, it tends to suffer from premature stagnation and loses exploration ability in the later evolution period when solving complex problems. This paper presents a sequential hybrid particle swarm optimization and gravitational search algorithm with dependent random coefficients called HPSO-GSA, which first incorporates the gravitational search algorithm (GSA) with the PSO by means of a sequential operating mode and then adopts three learning strategies in the hybridization process to overcome the aforementioned problem. Specifically, the particles in the HPSO-GSA enter into the PSO stage and update their velocities by adopting the dependent random coefficients strategy to enhance the exploration ability. Then, the GSA is incorporated into the PSO by using fixed iteration interval cycle or adaptive evolution stagnation cycle strategies when the swarm drops into local optimum and fails to improve their fitness. To evaluate the effectiveness and feasibility of the proposed HPSO-GSA, the simulations were conducted on benchmark test functions. The results reveal that the HPSO-GSA exhibits superior performance in terms of accuracy, reliability, and efficiency compared to PSO, GSA, and other recently developed hybrid variants.
Suggested Citation
Shanhe Jiang & Chaolong Zhang & Shijun Chen, 2020.
"Sequential Hybrid Particle Swarm Optimization and Gravitational Search Algorithm with Dependent Random Coefficients,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-17, April.
Handle:
RePEc:hin:jnlmpe:1957812
DOI: 10.1155/2020/1957812
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1957812. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.