IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1864481.html
   My bibliography  Save this article

Detecting Persistent User Behavior Using Probabilistic Counting in Network-Wide View

Author

Listed:
  • Aiping Zhou
  • Jin Qian
  • Hang Yu

Abstract

Persistent user behavior monitoring, which deals with finding users that occur persistently over a measurement period, is one hot topic in traffic measurement. It is significant for many applications, such as anomaly detection. Former works concentrate on monitoring frequent user behavior, such as users occurring frequently either over one measurement period or on one monitor. They have paid little attention to detect persistent user behavior over a long measurement period on multiple monitors. However, persistent users do not necessarily appear frequently in a short measurement period, but appear persistently in a long measurement period. Due to limited resource on monitors, it is not practical to collect a tremendous amount of network traffic in a long measurement period on one single monitor. Moreover, since network attackers deliberately send packets flowing through the entire managed network, it is difficult to detect abnormal behavior on one single monitor. To solve the above challenges, a novel method for detecting persistent user behavior called DPU is proposed, and it contains both online distributed traffic collection in a long measurement period on multiple monitors and offline centralized user behavior detection on the central server. The key idea of DPU is that we design the compact distributed synopsis data structure to collect the relevant information with users occurring in a long measurement period on each monitor, and we can reconstruct user IDs using simple calculations and bit settings to find users with persistent behavior on the basis of estimated occurrence frequency of users on the central server when user IDs are unknown in advance. The experiments are conducted on real traffic to evaluate the performance of detecting persistent user behavior, and the experimental results illustrate that our method can improve about 30% estimation accuracy, 40% detection precision, and accelerate about 3 times in comparison with the related method.

Suggested Citation

  • Aiping Zhou & Jin Qian & Hang Yu, 2021. "Detecting Persistent User Behavior Using Probabilistic Counting in Network-Wide View," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, October.
  • Handle: RePEc:hin:jnlmpe:1864481
    DOI: 10.1155/2021/1864481
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/1864481.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/1864481.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/1864481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1864481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.