IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/184643.html
   My bibliography  Save this article

A Modified Biogeography-Based Optimization for the Flexible Job Shop Scheduling Problem

Author

Listed:
  • Yuzhen Yang

Abstract

The flexible job shop scheduling problem (FJSSP) is a practical extension of classical job shop scheduling problem that is known to be NP-hard. In this paper, an effective modified biogeography-based optimization (MBBO) algorithm with machine-based shifting is proposed to solve FJSSP with makespan minimization. The MBBO attaches great importance to the balance between exploration and exploitation. At the initialization stage, different strategies which correspond to two-vector representation are proposed to generate the initial habitats. At global phase, different migration and mutation operators are properly designed. At local phase, a machine-based shifting decoding strategy and a local search based on insertion to the habitat with best makespan are introduced to enhance the exploitation ability. A series of experiments on two well-known benchmark instances are performed. The comparisons between MBBO and other famous algorithms as well as BBO variants prove the effectiveness and efficiency of MBBO in solving FJSSP.

Suggested Citation

  • Yuzhen Yang, 2015. "A Modified Biogeography-Based Optimization for the Flexible Job Shop Scheduling Problem," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, October.
  • Handle: RePEc:hin:jnlmpe:184643
    DOI: 10.1155/2015/184643
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/184643.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/184643.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/184643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mona A. S. Ali & Fathimathul Rajeena P. P. & Diaa Salama Abd Elminaam, 2022. "A Feature Selection Based on Improved Artificial Hummingbird Algorithm Using Random Opposition-Based Learning for Solving Waste Classification Problem," Mathematics, MDPI, vol. 10(15), pages 1-34, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:184643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.