IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1826783.html
   My bibliography  Save this article

Backstepping Control for the Schrödinger Equation with an Arbitrary Potential in a Confined Space

Author

Listed:
  • Pedro Franco
  • A. Schaum
  • Roberto Bernal Jaquez

Abstract

In this work the control design problem for the Schrödinger equation with an arbitrary potential is addressed. In particular a controller is designed which (i) for a space-dependent potential steers the state probability density function to a prescribed solution and (ii) for a space and state-dependent potential exponentially stabilizes the zero solution. The problem is addressed using a backstepping controller that steers to zero the deviation between the initial probability wave function and the target probability wave function. The exponential convergence property is rigorously established and the convergence behavior is illustrated using numerical simulations for the Morse and the Pöschl-Teller potentials as well as the semilinear Schrödinger equation with cubic potential.

Suggested Citation

  • Pedro Franco & A. Schaum & Roberto Bernal Jaquez, 2018. "Backstepping Control for the Schrödinger Equation with an Arbitrary Potential in a Confined Space," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-9, July.
  • Handle: RePEc:hin:jnlmpe:1826783
    DOI: 10.1155/2018/1826783
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/1826783.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/1826783.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/1826783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1826783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.