IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1813403.html
   My bibliography  Save this article

High Precision Clock Bias Prediction Model in Clock Synchronization System

Author

Listed:
  • Zan Liu
  • Xihong Chen
  • Jin Liu
  • Chenglong Li

Abstract

Time synchronization is a fundamental requirement for many services provided by a distributed system. Clock calibration through the time signal is the usual way to realize the synchronization among the clocks used in the distributed system. The interference to time signal transmission or equipment failures may bring about failure to synchronize the time. To solve this problem, a clock bias prediction module is paralleled in the clock calibration system. And for improving the precision of clock bias prediction, the first-order grey model with one variable (GM ) model is proposed. In the traditional GM model, the combination of parameters determined by least squares criterion is not optimal; therefore, the particle swarm optimization (PSO) is used to optimize GM model. At the same time, in order to avoid PSO getting stuck at local optimization and improve its efficiency, the mechanisms that double subgroups and nonlinear decreasing inertia weight are proposed. In order to test the precision of the improved model, we design clock calibration experiments, where time signal is transferred via radio and wired channel, respectively. The improved model is built on the basis of clock bias acquired in the experiments. The results show that the improved model is superior to other models both in precision and in stability. The precision of improved model increased by 66.4%~76.7%.

Suggested Citation

  • Zan Liu & Xihong Chen & Jin Liu & Chenglong Li, 2016. "High Precision Clock Bias Prediction Model in Clock Synchronization System," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-6, November.
  • Handle: RePEc:hin:jnlmpe:1813403
    DOI: 10.1155/2016/1813403
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/1813403.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/1813403.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/1813403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karol Makowiecki & Aleksander Lisowiec & Pawel Michalski & Marcin Habrych, 2022. "UTC Synchronized Signal Generation for Synchrophasors and Sampled Values Measurements," Energies, MDPI, vol. 15(19), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1813403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.