IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/175616.html
   My bibliography  Save this article

Boolean-Based Surface Procedure for the External Heat Transfer Analysis of Dams during Construction

Author

Listed:
  • Yu Hu
  • Zheng Zuo
  • Qingbin Li
  • Yunling Duan

Abstract

The external heat transfer of dams during construction is complex because such transfer is location specific and time varying. An external thermal model is developed in this paper. Five types of external heat flux are considered in the mathematical model: air-side convection, electromagnetic radiation, absorbed solar input, water-side convection, and surface insulation effect. A method for extracting and classifying the external surfaces of dams on the basis of Boolean operations is proposed. Heat transfer conditions can be automatically set up for each step according to the proposed method, and the method can be used as a preprocessing facility for finite element analysis. A 285 m high arch dam in Southwest China is examined as a study case. The model is implemented and found to correctly identify different types of external surfaces. Simulation result agrees well with the monitored temperatures.

Suggested Citation

  • Yu Hu & Zheng Zuo & Qingbin Li & Yunling Duan, 2013. "Boolean-Based Surface Procedure for the External Heat Transfer Analysis of Dams during Construction," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-17, December.
  • Handle: RePEc:hin:jnlmpe:175616
    DOI: 10.1155/2013/175616
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/175616.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/175616.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/175616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Görtz, J. & Jürgensen, J. & Stolz, D. & Wieprecht, S. & Terheiden, K., 2022. "Energy load prediction on structures and buildings-Effect of numerical model complexity on simulation of heat fluxes across the structure/environment interface," Applied Energy, Elsevier, vol. 326(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:175616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.