Author
Listed:
- Bin-bin Zhang
- Song Gao
- Chao-bo Chen
- Ji-chao Li
- Xue-qin Bi
Abstract
When qualified explosive devices fire the explosive agent unsuccessfully, on-site testers cannot diagnose fast and accurately whether it is the firing quality problem of the electrical explosive devices or explosive agent by using traditional test methods. And, if the explosive agent is fired unsuccessfully, generally, the only way is to test the explosive device by on-site testers themselves. In order to protect the on-site testers’ safety, this paper proposes an electrical explosive device firing quality identification algorithm based on HHT (Hilbert–Huang transform) of the explosive time series. Obtaining an explosive current time series during the firing process of electrical explosive devices by the explosive equipment, the IMFs (intrinsic mode functions) and a residual function of the explosive current time series are obtained by EMD (empirical mode decomposition), the feature vector, which is the energy characteristic values of the IMFs and residual function by Hilbert transformation, is the input of SVM (support vector machine), and the fired failure explosive device is identified as an excellent performance product or performance failure product by the trained SVM. Finally, semiconductor explosive devices are tested to verify the proposed algorithm, and the results show that the EMD-SVM algorithm can identify effectively the firing quality of firing explosive devices.
Suggested Citation
Bin-bin Zhang & Song Gao & Chao-bo Chen & Ji-chao Li & Xue-qin Bi, 2020.
"A Semiconductor Bridge Electrical Explosive Device Online Firing Quality Identification Algorithm,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-7, November.
Handle:
RePEc:hin:jnlmpe:1638705
DOI: 10.1155/2020/1638705
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1638705. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.