Author
Listed:
- Rongsheng Dong
- Lulu Bai
- Fengying Li
Abstract
Boundary pixel blur and category imbalance are common problems that occur during semantic segmentation of urban remote sensing images. Inspired by DenseU-Net, this paper proposes a new end-to-end network—SiameseDenseU-Net. First, the network simultaneously uses both true orthophoto (TOP) images and their corresponding normalized digital surface model (nDSM) as the input of the network structure. The deep image features are extracted in parallel by downsampling blocks. Information such as shallow textures and high-level abstract semantic features are fused throughout the connected channels. The features extracted by the two parallel processing chains are then fused. Finally, a softmax layer is used to perform prediction to generate dense label maps. Experiments on the Vaihingen dataset show that SiameseDenseU-Net improves the F 1-score by 8.2% and 7.63% compared with the Hourglass-ShapeNetwork (HSN) model and with the U-Net model. Regarding the boundary pixels, when using the same focus loss function based on median frequency balance weighting, compared with the original DenseU-Net, the small-target “car” category F 1-score of SiameseDenseU-Net improved by 0.92%. The overall accuracy and the average F 1-score also improved to varying degrees. The proposed SiameseDenseU-Net is better at identifying small-target categories and boundary pixels, and it is numerically and visually superior to the contrast model.
Suggested Citation
Rongsheng Dong & Lulu Bai & Fengying Li, 2020.
"SiameseDenseU-Net-based Semantic Segmentation of Urban Remote Sensing Images,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, March.
Handle:
RePEc:hin:jnlmpe:1515630
DOI: 10.1155/2020/1515630
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1515630. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.