IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1452762.html
   My bibliography  Save this article

A Closer Look at the Minimum-Variance Portfolio Optimization Model

Author

Listed:
  • Zhifeng Dai

Abstract

Recently, by imposing the regularization term to objective function or additional norm constraint to portfolio weights, a number of alternative portfolio strategies have been proposed to improve the empirical performance of the minimum-variance portfolio. In this paper, we firstly examine the relation between the weight norm-constrained method and the objective function regularization method in minimum-variance problems by analyzing the Karush–Kuhn–Tucker conditions of their Lagrangian functions. We give the range of parameters for the two models and the corresponding relationship of parameters. Given the range and manner of parameter selection, it will help researchers and practitioners better understand and apply the relevant portfolio models. We apply these models to construct optimal portfolios and test the proposed propositions by employing real market data.

Suggested Citation

  • Zhifeng Dai, 2019. "A Closer Look at the Minimum-Variance Portfolio Optimization Model," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-8, August.
  • Handle: RePEc:hin:jnlmpe:1452762
    DOI: 10.1155/2019/1452762
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/1452762.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/1452762.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1452762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasilios N. Katsikis & Spyridon D. Mourtas & Predrag S. Stanimirović & Shuai Li & Xinwei Cao, 2021. "Time-Varying Mean-Variance Portfolio Selection under Transaction Costs and Cardinality Constraint Problem via Beetle Antennae Search Algorithm (BAS)," SN Operations Research Forum, Springer, vol. 2(2), pages 1-26, June.
    2. Spyridon D. Mourtas & Chrysostomos Kasimis, 2022. "Exploiting Mean-Variance Portfolio Optimization Problems through Zeroing Neural Networks," Mathematics, MDPI, vol. 10(17), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1452762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.