Author
Listed:
- Zhen Meng
- Shichang Zhang
- Yan Yang
- Ming Liu
Abstract
Considering the different types of error and the nonlinearity of the meteorological measurement, this paper proposes a nonlinear partial least squares method for consistency analysis of meteorological data. For a meteorological element from one automated weather station, the proposed method builds the prediction model based on the corresponding meteorological elements of other surrounding automated weather stations to determine the abnormality of the measured values. For the proposed method, the latent variables of the independent variables and the dependent variables are extracted by the partial least squares (PLS), and then they are, respectively, used as the inputs and outputs of neural network to build the nonlinear internal model of PLS. The proposed method can deal with the limitation of traditional nonlinear PLS whose inner model is the fixed quadratic function or the spline function. Two typical neural networks are used in the proposed method, and they are the back propagation neural network and the adaptive neuro-fuzzy inference system (ANFIS). Moreover, the experiments are performed on the real data from the atmospheric observation equipment operation monitoring system of Shaanxi Province of China. The experimental results verify that the nonlinear PLS with the internal model of ANFIS has higher effectiveness and could realize the consistency analysis of meteorological data correctly.
Suggested Citation
Zhen Meng & Shichang Zhang & Yan Yang & Ming Liu, 2015.
"Nonlinear Partial Least Squares for Consistency Analysis of Meteorological Data,"
Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, October.
Handle:
RePEc:hin:jnlmpe:143965
DOI: 10.1155/2015/143965
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:143965. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.