IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1428137.html
   My bibliography  Save this article

Similarity Solutions of the MHD Boundary Layer Flow Past a Constant Wedge within Porous Media

Author

Listed:
  • Ramesh B. Kudenatti
  • Shreenivas R. Kirsur
  • Achala L. Nargund
  • N. M. Bujurke

Abstract

The two-dimensional magnetohydrodynamic flow of a viscous fluid over a constant wedge immersed in a porous medium is studied. The flow is induced by suction/injection and also by the mainstream flow that is assumed to vary in a power-law manner with coordinate distance along the boundary. The governing nonlinear boundary layer equations have been transformed into a third-order nonlinear Falkner-Skan equation through similarity transformations. This equation has been solved analytically for a wide range of parameters involved in the study. Various results for the dimensionless velocity profiles and skin frictions are discussed for the pressure gradient parameter, Hartmann number, permeability parameter, and suction/injection. A far-field asymptotic solution is also obtained which has revealed oscillatory velocity profiles when the flow has an adverse pressure gradient. The results show that, for the positive pressure gradient and mass transfer parameters, the thickness of the boundary layer becomes thin and the flow is directed entirely towards the wedge surface whereas for negative values the solutions have very different characters. Also it is found that MHD effects on the boundary layer are exactly the same as the porous medium in which both reduce the boundary layer thickness.

Suggested Citation

  • Ramesh B. Kudenatti & Shreenivas R. Kirsur & Achala L. Nargund & N. M. Bujurke, 2017. "Similarity Solutions of the MHD Boundary Layer Flow Past a Constant Wedge within Porous Media," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-11, January.
  • Handle: RePEc:hin:jnlmpe:1428137
    DOI: 10.1155/2017/1428137
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/1428137.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/1428137.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/1428137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalpana, G. & Madhura, K.R. & Kudenatti, Ramesh B., 2022. "Numerical study on the combined effects of Brownian motion and thermophoresis on an unsteady magnetohydrodynamics nanofluid boundary layer flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 78-96.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1428137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.