Author
Listed:
- Qiang Wang
- Yongshun Zhang
- Hanwei Liu
- Yiduo Guo
Abstract
Training samples contaminated by target-like signals is one of the major reasons for inhomogeneous clutter environment. In such environment, clutter covariance matrix in STAP (space-time adaptive processing) is estimated inaccurately, which finally leads to detection performance reduction. In terms of this problem, a STAP interference detection method based on simplified TT (time-time) transform is proposed in this letter. Considering the sparse physical property of clutter in the space-time plane, data on each range cell is first converted into a discrete slow time series. Then, the expression of simplified TT transform about sample data is derived step by step. Thirdly, the energy of each training sample is focalized and extracted by simplified TT transform from energy-variant difference between the unpolluted and polluted stage, and the physical significance of discarding the contaminated samples is analyzed. Lastly, the contaminated samples are picked out in light of the simplified TT transform-spectrum difference. The result on Monte Carlo simulation indicates that when training samples are contaminated by large power target-like signals, the proposed method is more effective in getting rid of the contaminated samples, reduces the computational complexity significantly, and promotes the target detection performance compared with the method of GIP (generalized inner product).
Suggested Citation
Qiang Wang & Yongshun Zhang & Hanwei Liu & Yiduo Guo, 2017.
"A Novel Interference Detection Method of STAP Based on Simplified TT Transform,"
Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-9, November.
Handle:
RePEc:hin:jnlmpe:1424835
DOI: 10.1155/2017/1424835
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1424835. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.