IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/140727.html
   My bibliography  Save this article

Efficient Resource Scheduling by Exploiting Relay Cache for Cellular Networks

Author

Listed:
  • Chun He
  • Haixia Cui
  • Gang Feng

Abstract

In relay-enhanced cellular systems, throughput of User Equipment (UE) is constrained by the bottleneck of the two-hop link, backhaul link (or the first hop link), and access link (the second hop link). To maximize the throughput, resource allocation should be coordinated between these two hops. A common resource scheduling algorithm, Adaptive Distributed Proportional Fair, only ensures that the throughput of the first hop is greater than or equal to that of the second hop. But it cannot guarantee a good balance of the throughput and fairness between the two hops. In this paper, we propose a Two-Hop Balanced Distributed Scheduling (TBS) algorithm by exploiting relay cache for non-real-time data traffic. The evolved Node Basestation (eNB) adaptively adjusts the number of Resource Blocks (RBs) allocated to the backhaul link and direct links based on the cache information of relays. Each relay allocates RBs for relay UEs based on the size of the relay UE’s Transport Block. We also design a relay UE’s ACK feedback mechanism to update the data at relay cache. Simulation results show that the proposed TBS can effectively improve resource utilization and achieve a good trade-off between system throughput and fairness by balancing the throughput of backhaul and access link.

Suggested Citation

  • Chun He & Haixia Cui & Gang Feng, 2015. "Efficient Resource Scheduling by Exploiting Relay Cache for Cellular Networks," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, March.
  • Handle: RePEc:hin:jnlmpe:140727
    DOI: 10.1155/2015/140727
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/140727.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/140727.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/140727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:140727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.