IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1390672.html
   My bibliography  Save this article

Deep Learning-Based Natural Language Processing Methods for Sentiment Analysis in Social Networks

Author

Listed:
  • Yan Li
  • Ning Cao

Abstract

This paper presents an in-depth study of the sentiment of social network communication through a deep learning-based natural language processing approach and designs a corresponding model to be applied in the actual social process. Specifically, the network can dynamically select the most important word in the current state according to the information available and achieve the accurate recognition of the dynamically changing important content in a sentence. Based on this, the semantic understanding of the whole sentence is achieved through a continuous cycle of the process. In addition, considering that the semantic representation of natural language is highly dependent on contextual information, the lack of contextual information will lead to the ambiguity and inaccuracy of semantic representation. In this paper, we study the sentiment analysis algorithms in social networks at two levels, unimodal and multimodal, and construct a text sentiment analysis model and a picture-text multimodal sentiment analysis model in social networks, respectively. By comparing the experiments with the existing models on several datasets, the accuracy of the two models exceeded the benchmark models by 4.45% and 5.2%, respectively, which verified the effectiveness of the two models. The feasibility of applying the optimized convolutional neural network recurrent optimization network to social network sentiment analysis is verified by practically applying the optimized convolutional neural network recurrent optimization network to single task and multitask and comparing other existing deep learning classifiers.

Suggested Citation

  • Yan Li & Ning Cao, 2022. "Deep Learning-Based Natural Language Processing Methods for Sentiment Analysis in Social Networks," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-10, July.
  • Handle: RePEc:hin:jnlmpe:1390672
    DOI: 10.1155/2022/1390672
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/1390672.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/1390672.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/1390672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1390672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.