IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/135862.html
   My bibliography  Save this article

A Hybrid Neural Network and H-P Filter Model for Short-Term Vegetable Price Forecasting

Author

Listed:
  • Youzhu Li
  • Chongguang Li
  • Mingyang Zheng

Abstract

This paper is concerned with time series data for vegetable prices, which have a great impact on human’s life. An accurate forecasting method for prices and an early-warning system in the vegetable market are an urgent need in people’s daily lives. The time series price data contain both linear and nonlinear patterns. Therefore, neither a current linear forecasting nor a neural network can be adequate for modeling and predicting the time series data. The linear forecasting model cannot deal with nonlinear relationships, while the neural network model alone is not able to handle both linear and nonlinear patterns at the same time. The linear Hodrick-Prescott (H-P) filter can extract the trend and cyclical components from time series data. We predict the linear and nonlinear patterns and then combine the two parts linearly to produce a forecast from the original data. This study proposes a structure of a hybrid neural network based on an H-P filter that learns the trend and seasonal patterns separately. The experiment uses vegetable prices data to evaluate the model. Comparisons with the autoregressive integrated moving average method and back propagation artificial neural network methods show that our method has higher accuracy than the others.

Suggested Citation

  • Youzhu Li & Chongguang Li & Mingyang Zheng, 2014. "A Hybrid Neural Network and H-P Filter Model for Short-Term Vegetable Price Forecasting," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, June.
  • Handle: RePEc:hin:jnlmpe:135862
    DOI: 10.1155/2014/135862
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/135862.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/135862.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/135862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youzhu Li & Jinsi Liu & Hongyu Yang & Jianxin Chen & Jason Xiong, 2021. "A Bibliometric Analysis of Literature on Vegetable Prices at Domestic and International Markets—A Knowledge Graph Approach," Agriculture, MDPI, vol. 11(10), pages 1-17, September.
    2. Helin Yin & Dong Jin & Yeong Hyeon Gu & Chang Jin Park & Sang Keun Han & Seong Joon Yoo, 2020. "STL-ATTLSTM: Vegetable Price Forecasting Using STL and Attention Mechanism-Based LSTM," Agriculture, MDPI, vol. 10(12), pages 1-17, December.
    3. Yeong Hyeon Gu & Dong Jin & Helin Yin & Ri Zheng & Xianghua Piao & Seong Joon Yoo, 2022. "Forecasting Agricultural Commodity Prices Using Dual Input Attention LSTM," Agriculture, MDPI, vol. 12(2), pages 1-18, February.
    4. Kai Ye & Yangheran Piao & Kun Zhao & Xiaohui Cui, 2021. "A Heterogeneous Graph Enhanced LSTM Network for Hog Price Prediction Using Online Discussion," Agriculture, MDPI, vol. 11(4), pages 1-14, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:135862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.