IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1356096.html
   My bibliography  Save this article

A Prediction Model of Forest Preliminary Precision Fertilization Based on Improved GRA-PSO-BP Neural Network

Author

Listed:
  • Chen Zuxing
  • Wang Dian

Abstract

The optimal amount of fertilizer application which was needed by the trees and the factors that influence the fertilization have an intricated nonlinear relationship. According to the problems that the traditional fertilization prediction model has, such as lacking of the scalability and practicality, this paper initiates an accurate fertilization prediction model that was based on the GRA-PSO-BP neural network which can make the accurate fertilization come true and improve the economic benefits of forest industry. This paper uses the GRA method to determine the input of the neural network as the site index and make the forest age, nutrient content of the advantage trees, biomass of the advantage trees, biomass of average trees, and target yield as the output numbers of the Actual amount of fertilizer applied. During the calculation process, the global particle swarm optimization algorithm is used to optimize the initial numbers and threshold numbers of BP neural network which build a phased GRA-PSO-BP accurate fertilization model. Compared with the prediction algorithm of full input variate that is based on the single BP neural network and the prediction algorithm of full input variate that is based on PSO-BP Neural Network, the GRA method can determine the key factors that influence the amount of fertilizer applied in different forest areas and modify the prediction model to improve the scalability and accuracy of the prediction and finally achieve the precision fertilization as the data of different forests updated, so we can see that the prediction result of this paper is more accurate. The result demonstrates that the GRA-PSO-BP neural network Segment fertilization model is more accurate than the traditional BP neural network and BP Neural Network that was optimized by the PSO algorithm, and specifically, the error of the predicted amount of fertilizer application and the actual amount of fertilizer application is less than 5%, which can effectively guide the fertilization in stages.

Suggested Citation

  • Chen Zuxing & Wang Dian, 2020. "A Prediction Model of Forest Preliminary Precision Fertilization Based on Improved GRA-PSO-BP Neural Network," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-17, August.
  • Handle: RePEc:hin:jnlmpe:1356096
    DOI: 10.1155/2020/1356096
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/1356096.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/1356096.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/1356096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1356096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.