IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1267045.html
   My bibliography  Save this article

Operation Optimization of Natural Gas Transmission Pipelines Based on Stochastic Optimization Algorithms: A Review

Author

Listed:
  • Xia Wu
  • Changjun Li
  • Yufa He
  • Wenlong Jia

Abstract

Operation optimization of natural gas pipelines has received increasing attentions, due to such advantages as maximizing the operating economic benefit and the gas delivery amount. This paper provides a review on the most relevant research progress related to the steady-state operation optimization models of natural gas pipelines as well as corresponding solution methods based on stochastic optimization algorithms. The existing operation optimization model of the natural gas pipeline is a mixed-integer nonlinear programming (MINLP) model involving a nonconvex feasible region and mixing of continuous, discrete, and integer optimization variables, which represents an extremely difficult problem to be solved by use of optimization algorithms. A survey on the state of the art demonstrates that many stochastic algorithms show better performance of solving such optimization models due to their advantages of handling discrete variables and of high computation efficiency over classical deterministic optimization algorithms. The essential progress mainly with regard to the applications of the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Simulated Annealing (SA) algorithms, and their extensions is summarized. The performances of these algorithms are compared in terms of the quality of optimization results and the computation efficiency. Furthermore, the research challenges of improving the optimization model, enhancing the stochastic algorithms, developing an online optimization technology, researching the transient optimization, and studying operation optimization of the integrated energy network are discussed.

Suggested Citation

  • Xia Wu & Changjun Li & Yufa He & Wenlong Jia, 2018. "Operation Optimization of Natural Gas Transmission Pipelines Based on Stochastic Optimization Algorithms: A Review," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-18, April.
  • Handle: RePEc:hin:jnlmpe:1267045
    DOI: 10.1155/2018/1267045
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/1267045.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/1267045.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/1267045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Guotao & Zhao, Wei & Qiu, Rui & Liao, Qi & Lin, Zhenjia & Wang, Chang & Zhang, Haoran, 2023. "Operational optimization of large-scale thermal constrained natural gas pipeline networks: A novel iterative decomposition approach," Energy, Elsevier, vol. 282(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1267045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.