Author
Listed:
- Sheng Gao
- Dinesh Kumar Saini
Abstract
In light of society's rapid advancement, more and more people worldwide are placing importance on education. There are several domains in China where the importance of writing exceeds the importance of reading, listening, or speaking. It has been shown that many Chinese students commit grammar problems if they are writing an article. Several researchers attempted to determine students' writing talents in terms of amount and complexity, on the one side, and then also focused on identifying conclusions on the accuracy, the organization of ideas, and the barriers to fluent writing via qualitative data gathering approaches. This research uses a machine learning technique to measure students' writing fluency. Writing fluency capabilities can be predicted using a novel adaptive generative adversarial network-based deep support vector machine (AGAN-DSVM) technique. The trace-oriented approach can be used to examine the features like accuracy, syntactic complexity, and organization of ideas aspects. The prediction rate of lexical complexity and sentence complexity of our proposed method achieves 90 and 95%, respectively. Plots created with origin's graphing tool display the results of a comparison between the proposed approach and several other ways already in use. The proposed method is evaluated and compared using several different metrics, including the accuracy dimension, syntactic complexity dimension, organization of ideas dimension, distributions of the mistakes in the text, lexical complexity, sentence complexity, essay particularities, and comparison of accuracy, F1 score, and syntactic complexity.
Suggested Citation
Sheng Gao & Dinesh Kumar Saini, 2022.
"Evaluation Method of Writing Fluency Based on Machine Learning Method,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, September.
Handle:
RePEc:hin:jnlmpe:1253614
DOI: 10.1155/2022/1253614
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1253614. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.