Author
Listed:
- Xiaowei An
- Qi Zhao
- Nongliang Sun
- Quanquan Liang
Abstract
In order to obtain the discriminative compact appearance model for tracking objects effectively, this paper proposes a new structural tracking strategy that includes multicue inverse sparse appearance model and optimal metric evaluation between online robust templates and a limited number of particle samples in the looping process. Multicue inverse sparse appearance model globally improves the efficient selection of informative particle samples that can avoid the cumbersome coding and decoding cost for the trivial random particle samples. Only the most potential crucial cases are involved in each tracking loop. This refrains from unreasonable, rough numerical reduction of particle samples and also keeps the unbiasedness and dynamic stochasticness of the sampling process. Meanwhile, low-rank self-representatives for positive and negative samples facilitate the formulation of a suitable code book that arranges the useful sparse coefficients for feature bags and facilitates optimal metric evaluation for online training. It also alleviates the accuracy degradation of tracking occluded objects and improves the robustness of the tracker. Both of them preserve the discriminative compactness of target which speeds up particle filtering localization to separate the target object from distractors. Moreover, the proposed method exploits online appearance representations to learn the sharing compact information that avoids massive calculation burdens for massive visual data.
Suggested Citation
Xiaowei An & Qi Zhao & Nongliang Sun & Quanquan Liang, 2020.
"Optimal Metric Evaluation-Based Multicue Inverse Sparse Appearance Model for Object Tracking,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, December.
Handle:
RePEc:hin:jnlmpe:1248064
DOI: 10.1155/2020/1248064
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1248064. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.