Author
Listed:
- Zhen Xue
- Liangliang Zhang
- Bo Zhai
- Muhammad Haroon Yousaf
Abstract
In track construction, it is an important and necessary guarantee for production safety to check the number of workers and tools before and after the track maintenance. In view of time-consuming, laborious, and low detection efficiency of traditional manual inspection way, we propose an improved YOLOv5 multiscale object detection algorithm for track construction safety in this paper. We improve, from Generalized Intersection over Union (GIoU) to Distance Intersection over Union (DIoU), the loss function for Bounding Box (BBox) regression to speed up the convergence of the model. And we also improve, from the Non-Maximum Suppression (NMS) to DIoU-NMS, the post-processing method to enhance the model’s detection ability for occluded objects and small objects. The experiment results on the Track Maintenance dataset (our self-prepared dataset) and MS COCO dataset show that the mAP value of our improved YOLOv5 algorithm is 94.8% and 38.7%, respectively. Compared with the original YOLOv5 algorithm, the mAP values on above datasets are increased by 5.1% and 5.4%, respectively. The validation experimental results on MS COCO dataset and Track Maintenance dataset indicate that the detection ability of our improved YOLOv5 algorithm for occluded objects and small objects is enhanced. The proposed algorithm can provide technical support for the real-time accurate detection of track construction workers and tools.
Suggested Citation
Zhen Xue & Liangliang Zhang & Bo Zhai & Muhammad Haroon Yousaf, 2022.
"Multiscale Object Detection Method for Track Construction Safety Based on Improved YOLOv5,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-10, August.
Handle:
RePEc:hin:jnlmpe:1214644
DOI: 10.1155/2022/1214644
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1214644. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.