Author
Listed:
- Xuan Wang
- Fangbing Ma
- Chunhui Li
- Jie Zhu
Abstract
Water resources vulnerability (WRV) assessment is an important basis for maintaining water resources security in a basin. In this paper, considering the complexity of the water resources system and the uncertainty of the assessment information, a method based on the Bayesian theory was developed for performing WRV assessments while using the constructed indicator system. This system includes four subsystems, the hydrological subsystem, the socioeconomic subsystem, the ecoenvironmental subsystem and the hydraulic engineering subsystem. The WRV degree for each subsystem and the integrated water resources system were assessed. Finally, the assessment results and the characteristics of the Bayesian method were compared with those of the grey relational analysis method and the parametric-system method. The results showed the following. (1) The WRV of the integrated water resources system of the entire Zhangjiakou region was very high; Zhangjiakou City and Xuanhua County have tendencies to belong to Extreme WRV, with probabilities of 26.8% and 25%, respectively, while the other seven administrative counties have tendencies to belong to High WRV, with probabilities ranging from 24.6% to 27%. (2) Compared with the parametric-system method and the grey relational analysis method, the Bayesian method is simple and can effectively address the uncertainty issues with the reliable WRV assessment results.
Suggested Citation
Xuan Wang & Fangbing Ma & Chunhui Li & Jie Zhu, 2015.
"A Bayesian Method for Water Resources Vulnerability Assessment: A Case Study of the Zhangjiakou Region, North China,"
Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-16, February.
Handle:
RePEc:hin:jnlmpe:120873
DOI: 10.1155/2015/120873
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:120873. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.