Author
Listed:
- Lei Xiao
- Minghai Xu
- Zhongyi Hu
Abstract
The predator algorithm is a representative pioneering work that achieves state-of-the-art performance on several popular visual tracking benchmarks and with great success when commercially applied to real-time face tracking in long-term unconstrained videos. However, there are two major drawbacks of predator algorithm when applied to inland CCTV (closed-circuit television) ship tracking. First, the LK short-term tracker within predator algorithm easily tends to drift if the target ship suffers partial or even full occlusion, mainly because the corner-points-like features employed by LK tracker are very sensitive to occlusion appearance change. Second, the cascaded detector within the predator algorithm searches for candidate objects in a predefined scale set, usually including 3-5 elements, which hampers the tracker to adapt to the potential diverse scale variations of the target ship. In this paper, we design a random projection based short-term tracker which can dramatically ease the tracking drift when the ship is under occlusion. Furthermore, a forward-backward feedback mechanism is proposed to estimate the scale variation between two consecutive frames. We prove that these two strategies gain significant improvements over the predator algorithm and also show that the proposed method outperforms several other state-of-the-art trackers.
Suggested Citation
Lei Xiao & Minghai Xu & Zhongyi Hu, 2018.
"Real-Time Inland CCTV Ship Tracking,"
Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, June.
Handle:
RePEc:hin:jnlmpe:1205210
DOI: 10.1155/2018/1205210
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1205210. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.