Author
Listed:
- Xiaoqing Wu
- Lei Du
- Gengxin Sun
Abstract
In this paper, the finite difference scheme of the spatiotemporal fractional convection-diffusion equation is established, and its stability and convergence are proved. Furthermore, this discrete technique is extended to solve nonlinear spatiotemporal fractional convection-diffusion equations. By using the Krylov subspace method to solve the discrete system, the numerical solution of the spatiotemporal fractional convection-diffusion equation can be obtained quickly. In this paper, an efficient optimal control algorithm is proposed to solve the free control problem of a class of nonlinear time-delay systems. We obtained the optimal control law of the system through the Bellman optimality principle, obtained the asymptotic stability criterion of the system in the form of LMI under the optimal control input by using the Lyapunov stability theory, and discussed the effect of the delay parameter on the system stability. Using the principle of intelligent neural network approximation function, the evaluation neural network and the execution neural network are used to approximate the optimal performance index function and optimal control input, respectively, the optimal control strategy of the system is obtained, and the convergence of the weight estimation error is proved to be optimal. On the basis of optimal state adjustment, the optimal tracking control problem is further solved. Numerical example results verify the effectiveness of the proposed method in terms of stability analysis, optimal state control, and optimal tracking control for the nonlinear time-delay system proposed in this paper. We calculate the parameters of the conveyor and select a reasonable transmission and sorting mechanism to realize the speed regulation of the driving motor of each mechanism. Through the work of each part, the design scheme of the automatic transmission system is formed, and the reliability, practicability, and economy of the system are guaranteed.
Suggested Citation
Xiaoqing Wu & Lei Du & Gengxin Sun, 2022.
"Optimal Control of the Logistics Automation Transmission System Based on Partial Differential Equation,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, September.
Handle:
RePEc:hin:jnlmpe:1198954
DOI: 10.1155/2022/1198954
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1198954. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.