Author
Abstract
With the development of information technology and the deepening of government system reform, e-government has become one of the key points of government construction. However, both in developing countries and developed countries, there is a common phenomenon that the success rate of e-government projects is not high. Although various e-government evaluation index systems have been proposed in both theoretical research and application aspects, which provide strong support for the development of e-government, these index systems still have limitations. This paper comprehensively applies BP neural network and adaptive matching tracking, and constructs an e-government performance evaluation model based on adaptive matching neural network. We conduct simulation experiments on the constructed model to verify the accuracy and rationality of the model evaluation. It is feasible to introduce the Balanced Scorecard to construct the E-government performance evaluation index system. The constructed index system has strong objectivity, operability, comprehensiveness, guidance and sustainability, and can be applied to the practice of e-government performance evaluation. It is feasible to use the adaptive matching tracking neural network model to evaluate the performance of e-government. The model has the ability to self-learn the evaluation samples, and can grasp the mapping relationship between the evaluation indicators and the evaluation results, so as to imitate the evaluation of experts, and overcome the evaluation randomness and subjective uncertainty that are difficult to get rid of in traditional manual evaluation. In order to better evaluate the operation status of the e-government system and its adaptability to future needs, and find out its existing problems, this paper fully considers the interaction process between the government and enterprises, and establishes a corresponding responsive government. The application of adaptive matching tracking neural network model for e-government performance evaluation has better optimization results than the original BP neural network model. The specific performance is that the convergence speed is fast, the training will not fall into a local minimum, and the error of the evaluation results is small.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1071648. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.