IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1048879.html
   My bibliography  Save this article

A Novel Crow Search Algorithm Based on Improved Flower Pollination

Author

Listed:
  • Qian Cheng
  • Huajuan Huang
  • Minbo Chen

Abstract

Crow search algorithm (CSA) is a new type of swarm intelligence optimization algorithm proposed by simulating the crows’ intelligent behavior of hiding and retrieving food. The algorithm has the characteristics of simple structure, few control parameters, and easy implementation. Like most optimization algorithms, the crow search algorithm also has the disadvantage of slow convergence and easy fall into local optimum. Therefore, a crow search algorithm based on improved flower pollination algorithm (IFCSA) is proposed to solve these problems. First, the search ability of the algorithm is balanced by the reasonable change of awareness probability, and then the convergence speed of the algorithm is improved. Second, when the leader finds himself followed, the cross-pollination strategy with Cauchy mutation is introduced to avoid the blindness of individual location update, thus improving the accuracy of the algorithm. Experiments on twenty benchmark problems and speed reducer design were conducted to compare the performance of IFCSA with that of other algorithms. The results show that IFCSA has better performance in function optimization and speed reducer design problem.

Suggested Citation

  • Qian Cheng & Huajuan Huang & Minbo Chen, 2021. "A Novel Crow Search Algorithm Based on Improved Flower Pollination," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-26, October.
  • Handle: RePEc:hin:jnlmpe:1048879
    DOI: 10.1155/2021/1048879
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/1048879.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/1048879.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/1048879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olympia Roeva & Gergana Roeva & Elena Chorukova, 2024. "Crow Search Algorithm for Modelling an Anaerobic Digestion Process: Algorithm Parameter Influence," Mathematics, MDPI, vol. 12(15), pages 1-20, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1048879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.