IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1013025.html
   My bibliography  Save this article

Flutter Performance of the Emergency Bridge with New-Type Cable-Girder

Author

Listed:
  • Lei Yang
  • Fei Shao
  • Qian Xu
  • Ke-bin Jiang

Abstract

Based on the proposed emergency bridge scheme, the flutter performance of the emergency bridge with the new-type cable-girder has been investigated through wind tunnel tests and numerical simulation analyses. Four aerodynamic optimization schemes have been developed in consideration of structure characteristics of the emergency bridge. The flutter performances of the aerodynamic optimization schemes have been investigated. The flutter derivatives of four aerodynamic optimization schemes have been analyzed. According to the results, the optimal scheme has been determined. Based on flutter theory of bridge, the differential equations of flutter of the emergency bridge with new-type cable-girder have been established. Iterative method has been used for solving the differential equations. The flutter analysis program has been compiled using the APDL language in ANSYS, and the bridge flutter critical wind speed of the optimal scheme has been determined by the program. The flutter analysis program has also been used to determine the bridge flutter critical wind speed of different wind-resistance cable schemes. The results indicate that the bridge flutter critical wind speed of the original emergency bridge scheme is lower than the flutter checking wind speed. The aerodynamic combined measurements of central-slotted and wind fairing are the optimal scheme, with the safety coefficients larger than 1.2 at the wind attack angles of −3°, 0°, and +3°. The bridge flutter critical wind speed of the optimal scheme has been determined using the flutter analysis program, and the numerical results agree well with the wind tunnel test results. The wind-resistance cable scheme of 90° is the optimal wind cable scheme, and the bridge flutter critical wind speed increased 31.4%. However, in consideration of the convenience in construction and the effectiveness in erection, the scheme of wind-resistance cable in the horizontal direction has been selected to be used in the emergency bridge with new-type cable-girder.

Suggested Citation

  • Lei Yang & Fei Shao & Qian Xu & Ke-bin Jiang, 2019. "Flutter Performance of the Emergency Bridge with New-Type Cable-Girder," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-14, March.
  • Handle: RePEc:hin:jnlmpe:1013025
    DOI: 10.1155/2019/1013025
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/1013025.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/1013025.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1013025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1013025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.