IDEAS home Printed from https://ideas.repec.org/a/hin/jnljps/275308.html
   My bibliography  Save this article

Asymptotically Sufficient Statistics in Nonparametric Regression Experiments with Correlated Noise

Author

Listed:
  • Andrew V. Carter

Abstract

We find asymptotically sufficient statistics that could help simplify inference in nonparametric regression problems with correlated errors. These statistics are derived from a wavelet decomposition that is used to whiten the noise process and to effectively separate high-resolution and low-resolution components. The lower-resolution components contain nearly all the available information about the mean function, and the higher-resolution components can be used to estimate the error covariances. The strength of the correlation among the errors is related to the speed at which the variance of the higher-resolution components shrinks, and this is considered an additional nuisance parameter in the model. We show that the NPR experiment with correlated noise is asymptotically equivalent to an experiment that observes the mean function in the presence of a continuous Gaussian process that is similar to a fractional Brownian motion. These results provide a theoretical motivation for some commonly proposed wavelet estimation techniques.

Suggested Citation

  • Andrew V. Carter, 2009. "Asymptotically Sufficient Statistics in Nonparametric Regression Experiments with Correlated Noise," Journal of Probability and Statistics, Hindawi, vol. 2009, pages 1-19, January.
  • Handle: RePEc:hin:jnljps:275308
    DOI: 10.1155/2009/275308
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JPS/2009/275308.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JPS/2009/275308.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2009/275308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holger Dette & Martin Kroll, 2022. "Asymptotic equivalence for nonparametric regression with dependent errors: Gauss–Markov processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1163-1196, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljps:275308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.