IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/873670.html
   My bibliography  Save this article

Chaotic Hopfield Neural Network Swarm Optimization and Its Application

Author

Listed:
  • Yanxia Sun
  • Zenghui Wang
  • Barend Jacobus van Wyk

Abstract

A new neural network based optimization algorithm is proposed. The presented model is a discrete-time, continuous-state Hopfield neural network and the states of the model are updated synchronously. The proposed algorithm combines the advantages of traditional PSO, chaos and Hopfield neural networks: particles learn from their own experience and the experiences of surrounding particles, their search behavior is ergodic, and convergence of the swarm is guaranteed. The effectiveness of the proposed approach is demonstrated using simulations and typical optimization problems.

Suggested Citation

  • Yanxia Sun & Zenghui Wang & Barend Jacobus van Wyk, 2013. "Chaotic Hopfield Neural Network Swarm Optimization and Its Application," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-10, April.
  • Handle: RePEc:hin:jnljam:873670
    DOI: 10.1155/2013/873670
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2013/873670.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2013/873670.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/873670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Veerasamy, Veerapandiyan & Abdul Wahab, Noor Izzri & Ramachandran, Rajeswari & Othman, Mohammad Lutfi & Hizam, Hashim & Devendran, Vidhya Sagar & Irudayaraj, Andrew Xavier Raj & Vinayagam, Arangarajan, 2021. "Recurrent network based power flow solution for voltage stability assessment and improvement with distributed energy sources," Applied Energy, Elsevier, vol. 302(C).
    2. Yuan Gao & Yueling Guo & Nurul Atiqah Romli & Mohd Shareduwan Mohd Kasihmuddin & Weixiang Chen & Mohd. Asyraf Mansor & Ju Chen, 2022. "GRAN3SAT: Creating Flexible Higher-Order Logic Satisfiability in the Discrete Hopfield Neural Network," Mathematics, MDPI, vol. 10(11), pages 1-28, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:873670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.