IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/862645.html
   My bibliography  Save this article

The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels

Author

Listed:
  • Yue-Tzu Yang
  • Kuo-Teng Tsai
  • Cha’o-Kuang Chen

Abstract

The objective of this study is to use a new style of waved flow channel instead of the plane surface channel in the proton exchange membrane fuel cell (PEMFC). The velocity, concentration, and electrical performance with the waved flow channel in PEMFC are investigated by numerical simulations. The results show that the waved channel arises when the transport benefits through the porous layer and improves the performance of the PEMFC. This is because the waved flow channel enhances the forced convection and causes the more reactant gas flow into the gas diffusion layer (GDL). The performance which was compared to a conventional straight gas flow channel increases significantly with the small gap size when it is smaller than 0.5 in the waved flow channel. The performance is decreased at the high and low velocities as the force convection mechanism is weakened and the reactant gas supply is insufficient. The pressure drop is increased as the gap size becomes smaller, and the wave number decreases. (gap size) δ > 0.3 has a reasonable pressure drop. Consequently, compared to a conventional PEMFC, the waved flow channel improves approximately 30% of power density.

Suggested Citation

  • Yue-Tzu Yang & Kuo-Teng Tsai & Cha’o-Kuang Chen, 2013. "The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-14, February.
  • Handle: RePEc:hin:jnljam:862645
    DOI: 10.1155/2013/862645
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2013/862645.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2013/862645.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/862645?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
    2. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:862645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.