IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/856350.html
   My bibliography  Save this article

Robust Mean Change-Point Detecting through Laplace Linear Regression Using EM Algorithm

Author

Listed:
  • Fengkai Yang

Abstract

We proposed a robust mean change-point estimation algorithm in linear regression with the assumption that the errors follow the Laplace distribution. By representing the Laplace distribution as an appropriate scale mixture of normal distribution, we developed the expectation maximization (EM) algorithm to estimate the position of mean change-point. We investigated the performance of the algorithm through different simulations, finding that our methods is robust to the distributions of errors and is effective to estimate the position of mean change-point. Finally, we applied our method to the classical Holbert data and detected a change-point.

Suggested Citation

  • Fengkai Yang, 2014. "Robust Mean Change-Point Detecting through Laplace Linear Regression Using EM Algorithm," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, November.
  • Handle: RePEc:hin:jnljam:856350
    DOI: 10.1155/2014/856350
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2014/856350.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2014/856350.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/856350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang-Ping Lu & Shao-Tung Chang, 2022. "Robust Switching Regressions Using the Laplace Distribution," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    2. Kang-Ping Lu & Shao-Tung Chang, 2021. "Robust Algorithms for Change-Point Regressions Using the t -Distribution," Mathematics, MDPI, vol. 9(19), pages 1-28, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:856350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.