Author
Listed:
- John Kamwele Mutinda
- Abebe Geletu
Abstract
This study investigates the forecasting of the Deutscher Aktienindex (DAX) market index by addressing the nonlinear and nonstationary nature of financial time series data using the CEEMDAN decomposition method. The CEEMDAN technique is used to decompose the time series into intrinsic mode functions (IMFs) and residuals, which are classified into low-frequency (LF), medium-frequency (MF), and high-frequency (HF) components. Long short-term memory (LSTM) networks are applied to the MF and HF components, while the backpropagation neural network (BPNN) is utilized for the LF components, resulting in a robust hybrid model termed CEEMDAN-LSTM-BPNN. To evaluate the performance of the proposed model, we compare it against several benchmark models, including ARIMA, RNN, LSTM, GRU, BIGRU, BILSTM, BPNN, CEEMDAN-LSTM, CEEMDAN-GRU, CEEMDAN-BPNN, and CEEMDAN-GRU-BPNN, across different training–testing splits (70% training/30% testing, 80% training/20% testing, and 90% training/10% testing). The model’s predictive accuracy is measured using six metrics: root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE), root mean squared logarithmic error (RMSLE), and R-squared. To further assess model performance, we conduct the Diebold–Mariano (DM) test to compare forecast accuracy between the proposed and benchmark models and the model confidence set (MCS) test to evaluate the statistical significance of the improvement. The results demonstrate that the CEEMDAN-LSTM-BPNN model significantly outperforms other methods in terms of accuracy, with the DM and MCS tests confirming the superiority of the proposed model across multiple evaluation metrics. The findings highlight the importance of combining advanced decomposition methods and deep learning models for financial forecasting. This research contributes to the development of more accurate forecasting techniques, offering valuable implications for financial decision-making and risk management.
Suggested Citation
John Kamwele Mutinda & Abebe Geletu, 2025.
"Stock Market Index Prediction Using CEEMDAN-LSTM-BPNN-Decomposition Ensemble Model,"
Journal of Applied Mathematics, Hindawi, vol. 2025, pages 1-32, March.
Handle:
RePEc:hin:jnljam:7706431
DOI: 10.1155/jama/7706431
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:7706431. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.