IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/764894.html
   My bibliography  Save this article

Numerical Studies for Fractional-Order Logistic Differential Equation with Two Different Delays

Author

Listed:
  • N. H. Sweilam
  • M. M. Khader
  • A. M. S. Mahdy

Abstract

A numerical method for solving the fractional-order logistic differential equation with two different delays (FOLE) is considered. The fractional derivative is described in the Caputo sense. The proposed method is based upon Chebyshev approximations. The properties of Chebyshev polynomials are utilized to reduce FOLE to a system of algebraic equations. Special attention is given to study the convergence and the error estimate of the presented method. Numerical illustrations are presented to demonstrate utility of the proposed method. Chaotic behavior is observed and the smallest fractional order for the chaotic behavior is obtained. Also, FOLE is studied using variational iteration method (VIM) and the fractional complex transform is introduced to convert fractional Logistic equation to its differential partner, so that its variational iteration algorithm can be simply constructed. Numerical experiment is presented to illustrate the validity and the great potential of both proposed techniques.

Suggested Citation

  • N. H. Sweilam & M. M. Khader & A. M. S. Mahdy, 2012. "Numerical Studies for Fractional-Order Logistic Differential Equation with Two Different Delays," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-14, September.
  • Handle: RePEc:hin:jnljam:764894
    DOI: 10.1155/2012/764894
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2012/764894.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2012/764894.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/764894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nasser Hassan Sweilam & Seham Mahyoub Al-Mekhlafi & Taghreed Abdul Rahman Assiri, 2017. "Numerical Study for Time Delay Multistrain Tuberculosis Model of Fractional Order," Complexity, Hindawi, vol. 2017, pages 1-14, July.
    2. Hasan, Shatha & El-Ajou, Ahmad & Hadid, Samir & Al-Smadi, Mohammed & Momani, Shaher, 2020. "Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Khader, M.M. & Saad, K.M., 2018. "A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 169-177.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:764894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.