IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/750819.html
   My bibliography  Save this article

Harmony Search Based Parameter Ensemble Adaptation for Differential Evolution

Author

Listed:
  • Rammohan Mallipeddi

Abstract

In differential evolution (DE) algorithm, depending on the characteristics of the problem at hand and the available computational resources, different strategies combined with a different set of parameters may be effective. In addition, a single, well-tuned combination of strategies and parameters may not guarantee optimal performance because different strategies combined with different parameter settings can be appropriate during different stages of the evolution. Therefore, various adaptive/self-adaptive techniques have been proposed to adapt the DE strategies and parameters during the course of evolution. In this paper, we propose a new parameter adaptation technique for DE based on ensemble approach and harmony search algorithm (HS). In the proposed method, an ensemble of parameters is randomly sampled which form the initial harmony memory. The parameter ensemble evolves during the course of the optimization process by HS algorithm. Each parameter combination in the harmony memory is evaluated by testing them on the DE population. The performance of the proposed adaptation method is evaluated using two recently proposed strategies (DE/current-to- p best/bin and DE/current-to-gr_best/bin) as basic DE frameworks. Numerical results demonstrate the effectiveness of the proposed adaptation technique compared to the state-of-the-art DE based algorithms on a set of challenging test problems (CEC 2005).

Suggested Citation

  • Rammohan Mallipeddi, 2013. "Harmony Search Based Parameter Ensemble Adaptation for Differential Evolution," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-12, July.
  • Handle: RePEc:hin:jnljam:750819
    DOI: 10.1155/2013/750819
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2013/750819.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2013/750819.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/750819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:750819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.